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We propose a data-driven approach to measure interdependences between dissipative dynamical systems
under the influence of noise. We estimate drift and diffusion coefficients of a Fokker-Planck equation and
derive measures that allow one to quantify the asymmetry in coupling in a fully automated and computationally
inexpensive and simple way. Our approach makes it possible to discriminate between interdependences in the
deterministic and stochastic parts of the dynamics. We report results of numerical studies of exemplary time
series from coupled stochastic and deterministic model systems and of an application to electroencephalo-
graphic recordings from epilepsy patients.
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I. INTRODUCTION

Understanding interdependences between complex dy-
namical systems is of great importance in nearly all sciences,
including physics, chemistry, biology, neurosciences,
economy, and even sociology. In many situations the under-
lying equations of motion are not known, but a detailed
quantitative description of interdependences can nevertheless
be achieved by applying time-series analysis techniques to
experimentally acquired observables. Over the last decades a
number of methods have been developed that allow one to
detect and to quantify the strength of possible interactions
�see �1–4� for an overview�. More recently, asymmetric ap-
proaches have facilitated the detection of directional cou-
pling from time series. These approaches can be divided into
three major groups �for an overview see �5,6��: techniques
based on interrelations of the phases of the time series
�7–15�, state-space-based methods �16–19�, and information-
theoretic approaches �20–22�. Some of these methods make
rather strict assumptions about the dynamics of the systems
generating the time series �e.g., linear systems or weakly
coupled self sustained oscillators�, and many approaches
preferentially focus on the low-dimensional deterministic
part of the dynamics. The dynamics of many complex sys-
tems, however, exhibits deterministic and stochastic features,
and nontrivial effects of noise—particularly in nonlinear dy-
namical systems—are a subject of great interest and impor-
tance �23–25�.

We here introduce an alternative approach to measure in-
terdependences in dissipative dynamical systems under the
influence of dynamical noise. These systems can often be
successfully modeled by a Fokker-Planck equation, which
reads �26–28�
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where the state of the d-dimensional system is denoted by
x= �x1 , . . . ,xd� and p��x , t�x� , t�� is the conditional probability
density to find the system in state x at time t if it was in state
x� at time t�. An equivalent description of the level of real-
izations of the process is given by the associated Langevin
equation

ẋi = hi�x,t� + �
j

gij�x,t�� j�t� , �2�

where � j�t� are uncorrelated Gaussian white noise
processes—i.e., 	�i�t�� j�t��
=�ij��t− t��, which have vanish-
ing mean 	� j�t�
=0. The functions hi describe the determin-
istic part of the dynamics, and g= �gij� is a symmetric matrix
specifying the strength of the noise. If the entries gij depend
on the state x, the stochastic part is referred to as multiplica-
tive dynamical noise, otherwise as additive dynamical noise.
The functions hi and gij are related to the drift �Di

�1�� and
diffusion �Dij

�2�� coefficients of the associated Fokker-Planck
equation via

Di
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using Itô’s interpretation of stochastic integrals �26�.
In Refs. �29–31� an analysis technique has been intro-

duced that allows—for stationary �and ergodic� processes—
the estimation of the coefficients D�n� from time-series data
using their statistical definition in terms of the conditional
moments m�n� of the process
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m�n��x,�� = �	�X�t + �� − X�t��n
�X�t�=x. �6�

In the case of the diffusion coefficient �n=2� the square has
to be evaluated as a dyadic product, and the conditional mo-
ments in Eq. �6� are calculated for finite time steps � and then
extrapolated to �=0. This technique has been successfully
applied in a variety of disciplines ranging from physics
�32–38� to the biomedical domain �39–41� and, more re-
cently, has been shown to provide valuable information for
the diagnosis of epileptic brain dynamics �42�. Moreover, in
Refs. �43,44� the proposed time-series analysis technique
was extended further to handle both dynamical and measure-
ment noise. We here use this approach to derive measures for
interdependences between stochastic processes by investigat-
ing the functional dependence of the estimated Fokker-
Planck coefficients on the different components of a multidi-
mensional time series.

This paper is organized as follows. In Sec. II we define
our measures for interdependences between stochastic pro-
cesses using the time-series analysis approach introduced in
Refs. �29–31�. We show results of numerical studies of ex-
emplary time series from coupled stochastic and determinis-
tic model systems in Sec. III, and in Sec. IV we report on an
application of our approach to measure interdependences in
electroencephalographic recordings from epilepsy patients
and discuss the potential diagnostic relevance of our ap-
proach. Finally, concluding remarks are given in Sec. V.

II. DEFINITION OF INTERDEPENDENCE
MEASURES

To characterize interactions between stochastic processes
we estimate the drift and diffusion coefficients of the corre-
sponding Fokker-Planck equation of the process from em-
pirical data �cf. Eqs. �5� and �6��. We then derive interdepen-
dence measures by investigating the functional dependence
of the estimated Fokker-Planck coefficients on the different
components of a multidimensional time series in a fully au-
tomated and computationally inexpensive way. For this pur-
pose we consider two time series x1 and x2 as a realization of
a two-dimensional �Markovian� stochastic process �generali-
zation to higher dimensions is straightforward� and define
measures quantifying the asymmetry in the coupling between
the components of this process. Interdependence can result
from �a� a coupling in the components of the drift vector
describing the deterministic part of the dynamics—i.e.,
Di

�1��xj��const for a fixed xi and i� j, �b� a coupling in the
components of the diffusion matrix describing the stochastic
part of the dynamics such that the diagonal elements Dii

�2�

depend on the components xj �i� j�, and �c� a coupling in the
stochastic part such that Dij

�2��0 holds for the off-diagonal
elements of the diffusion matrix. When taking into account
the relationship between D�2� and the function g in the
Langevin equation �cf. Eq. �4��—i.e., D11

�2�=g11
2 +g12

2 , D22
�2�

=g12
2 +g22

2 , and D12
�2�=g11g12+g12g22—it becomes obvious that

for case �b� couplings can be present in both the diagonal and
off-diagonal elements of g. Moreover, the requirement of
nonvanishing elements Dij

�2� in case �c� only holds for gij
�0, which leads to a mixture of the two noise processes �1

and �2 in the Langevin equation. In this case, both compo-
nents of the process are driven by the same noise processes,
which could be related to phenomena such as stochastic syn-
chronization �25�.

In order to exemplify our approach we show, in Fig. 1, a
schematic for the second component D2

�1��x1 ,x2� of a hypo-
thetical drift vector that varies in the x1 direction only �see
Ref. �45� for an example of coefficients D�n��x1 ,x2� derived
from empirical data�. For estimating D2

�1��x1 ,x2� from time-
series data �cf. Eq. �5�� we first divide the �x1 ,x2� plane into
B2 bins, and whenever the trajectory of the process hits a
certain bin—say, �x1

k ,x2
l �—we calculate the increment Ikl

�x2�

= 1
� �x2�t+��−x2�t�� in the direction of x2. For a fixed time

shift � we then estimate D2
�1��x1

k ,x2
l � as the mean value of the

distribution of increments in bin �x1
k ,x2

l � and its statistical
error E�D2

�1��x1
k ,x2

l �� as the standard error of that mean.
Now, in order to determine the dependence of D2

�1��x1 ,x2�
on x1—indicating that x1 couples to the deterministic evolu-
tion of x2—we proceed as follows. For each x2

l we calculate
the weighted average �l

w�D2
�1��x1 ,x2��=�kwkD2
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k ,x2

l � /
�kwk over all bins in the x1 direction where the inverses
of the statistical errors are used as weights, i.e., wk
=1 /E�D2

�1��x1
k ,x2

l ��, and then average over error-weighted
distances according to

�l =
1

nl
�

k

�D2
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l � − �l

w�D2
�1��x1,x2���

E�D2
�1��x1
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l ��

, �7�

where nl denotes the number of bins in the x1 direction for
which at least L increments could be calculated. We finally
average over all bins in the x2 direction, and with F2←1

�1�

=1 /n�l�l �n denotes the number of x2
l values for which �l

�0� we measure the dependence of D2
�1� on x1. Note that the

superscript of F2←1
�1� relates to the drift coefficient and with

the subscripts we indicate the dependence of the second
component of the drift vector on the first component of the
process. With the opposite dependence, which is defined in

D
(1)

2

x1

x2

x
l

2

x
k

1

FIG. 1. Schematic of the second component D2
�1��x1 ,x2� of a

hypothetical drift vector. Black squares and error bars indicate es-
timates for D2

�1��x1
k ,x2

l � and their statistical errors for fixed values of
x1

k and x2
l . The solid horizontal line indicates the error-weighted

average �l
w of the values of the coefficient over all bins in x1 direc-

tion for a fixed value of x2
l . The dashed vertical lines are the dis-

tances of these values from �l
w.
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complete analogy, we define a normalized measure for a cou-
pling in the deterministic part of the dynamics as

F�1� = �F1←2
�1� − F2←1

�1� �/�F1←2
�1� + F2←1

�1� � . �8�

F�1� is confined to the interval �−1;1� with positive values
indicating a stronger influence of x2 on x1 and negative val-
ues a stronger influence of x1 on x2. A value close to zero can
either indicate the absence of interdependences or mutual
influences of the two components of the process with com-
parable strengths. We note that in the latter case an observ-
able of the form 2F1←2

�1� / �F1←2
�1� +F2←1

�1� � can help to distin-
guish between these cases. Proceeding in the same way with
the diagonal elements of the estimated diffusion coefficient
we define—in complete analogy—a normalized measure for
a coupling in the stochastic part of the dynamics as

F�2� = �F11←2
�2� − F22←1

�2� �/�F11←2
�2� + F22←1

�2� � . �9�

Finally, by calculating the average value of the off-
diagonal element of the estimated diffusion coefficient in
units of its statistical error we define a measure that allows
one to detect a mixing of the noise processes as

M�2� =
1

nB
�
ij

D12
�2��x1

i ,x2
j �/E�D12

�2��x1
i ,x2

j �� , �10�

where nB denotes the total number of bins that were hit at
least L times by the trajectory of the process.

III. APPLICATION TO MODEL SYSTEMS

A. Two-dimensional diffusion processes

We first present our findings obtained from an analysis of
time series that were generated by numerically integrating
two-dimensional Langevin equations �46� of the form

ẋ1 = f1�x1� + �1
�1�x2 + �g11 + �1

�2�x2��1 + �12
�2�g12�2,

ẋ2 = f2�x2� + �2
�1�x1 + �12

�2�g12�1 + �g22 + �2
�2�x1��2, �11�

where f1�x1�=−�x1, f2�x2�=x2�	−x2
2�, and gij =const. Differ-

ent choices of the coupling strengths � allowed us to simulate
the different types of couplings described above, to choose
their directions, and to vary their strength. The system was
integrated using a stochastic Euler scheme with an internal
time step of 0.001. For the analyses the time series were
down-sampled by a factor of 10 and normalized to zero
mean and unit variance. We note that our measures do not
depend on the chosen normalization, since the estimated co-
efficients enter Eqs. �7�–�10� in units of their statistical errors
only. Time series consisted of N=50 000 data points. We
partitioned the state space using B=10 bins per dimension
and required a minimum number of entries per bin of L
=100 �47�. For each value of the coupling strength we gen-
erated 100 independent realizations of the respective pro-
cesses and used a fixed time shift of �=1 sampling interval
for the estimation of the coefficients to allow a fully automa-
tized analysis.

In Fig. 2�a� we present results obtained for a unidirec-
tional coupling of x2 into the deterministic part of the equa-
tion of motion of x1 �i.e., all coupling strengths were zero
except �1

�1��. F�1� correctly detected the direction of the cou-

(a)

ε
(1)
1

(b)

ε
(2)
1

(c)

ε
(2)
12

(d)

ε
(1)
1

FIG. 2. Dependence of F�1�,
F�2�, and M�2� on the coupling
strength. �a� Coupling in the deter-
ministic part, �b� coupling in the
stochastic part, �c� mixing of the
noise processes, and �d� bidirec-
tional coupling in the determinis-
tic part with fixed �2

�1�=0.7. Sym-
bols and error bars denote means
and standard deviations derived
from 100 realizations of the re-
spective processes. Time series
consisted of N=50 000 data
points. Parameters in Eq. �11�: �
=	=0.1 for �a�–�c� and �=3, 	
=1 for �d�; g11=g22=0.1, g12

=0.01.
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pling �positive values� and allowed us to quantify its strength
for a large range of coupling strengths �about two orders of
magnitude before it saturates to a value close to 1�. F�2� and
M�2� only detected a coupling at larger values of �1

�1��, which
can be explained by the finite time step used for estimating
the coefficients �48–50�. This leads to O��2� contributions in
the second moment m�2�= �	�X�t+��−X�t��2
�X�t�=x that are
functions of D�1� and thus contain the coupling �see the Ap-
pendix�. Nevertheless, for a relatively wide range of �1

�1� val-
ues �0.1
�1

�1�
1.0� an identification of the coupling in the
deterministic part was possible. For a unidirectional coupling
of x2 into the first diagonal element of the stochastic part of
the equation of motion of x1 �i.e., all coupling strengths were
zero except �1

�2�� we obtained qualitatively similar results �cf.
Fig. 2�b��. F�2� turned out to be sensitive to weaker cou-
plings, and the range of the coupling strength that could be
resolved before the measure saturated to a value close to 1
was about 1.5 orders of magnitude. Furthermore, for the
whole range of �1

�2� values investigated here a clear identifi-
cation of the coupling in the diagonal element of the stochas-
tic part of the dynamics was possible since F�1�0 and
M�2�0 within the range of errors. In the case of a mixing of
the noise processes �i.e., all coupling strengths were zero
except �12

�2�� our measures were able to clearly identify this
type of coupling �Fig. 2�c��. F�1� and F�2� attained values
close to zero �within the range of errors� for the whole range
of �12

�2� values, while M�2� allowed us to quantify the coupling
for �12

�2��0.1. For a bidirectional coupling of the two process
components in the deterministic part of the dynamics �i.e., all
coupling strengths were zero except �1

�1� and �2
�1�� our find-

ings show that the direction of the dominating coupling can
be identified �cf. Fig. 2�d��. We note that a parameter adjust-
ment �cf. Eq. �11�� was necessary to guarantee stability of the
simulated system, particularly for strong couplings. Fixing
the coupling strength �2

�1�=0.7 we observed negative values
of F�1� for �1

�1��0.7 and positive values for �1
�1��0.7. As can

be expected from our findings for a unidirectional coupling
�cf. Fig. 2�a� and the Appendix�, F�2� showed a similar de-
pendence; however, it attained lower values than F�1�. M�2�

fluctuated around zero within the range of errors.
We next study the influence of the number of data points,

N, of the time series on our interdependence measures. As
examples, we show in Fig. 3�a� results for F�1� in the case of
a coupling of x2 into the deterministic part of the equation of
motion of x1, in Fig. 3�b� for F�2� in the case of a coupling of
x2 into the first diagonal element of the stochastic part, and in
Fig. 3�c� for M�2� in the case of a mixing of the noise pro-
cesses. As expected, the sensitivity of F�1� and F�2� to weaker
couplings decreased with a decreasing number of data points,
accompanied by an increase of the statistical spread. Never-
theless, we were able to identify the type of coupling and to
quantify its asymmetry from time series consisting of as few
as N=5000 data points. For time-series sizes of less than N
=5000 data points the direction of coupling can still be de-
tected with F�1� and F�2� for large coupling strength, but the
statistical spread of the measure values becomes very large
�results not shown here�. In the case of a mixing of the noise
processes the sensitivity of M�2� did not seem to depend on
the number of data points N �cf. Fig. 3�c��. Only the statis-
tical spread of M�2� increased with decreasing N, and we

were able to resolve a range of coupling strengths of about
two orders of magnitude even with as few as N=1000 data
points.

B. Higher-dimensional deterministic model system

We next consider the case of higher-dimensional deter-
ministic systems that do not meet the prerequisites needed
for an analysis in terms of a two-dimensional Fokker-Planck
equation. As an example for such systems, we here consider
coupled Rössler dynamics �cf. �51–53��

(a)

ε
(1)
1

F
(1

)

(b)

ε
(2)
1

F
(2

)

(c)

ε
(2)
12

M
(2

)

FIG. 3. Dependence on the coupling strength of F�1� in the case
of a unidirectional coupling in the deterministic part �a�, of F�2� in
the case of a unidirectional coupling in the diagonal element of the
stochastic part �b�, and of M�2� in the case of a mixing of the noise
processes �c� for different sizes N of the analyzed time series. Sym-
bols and error bars denote means and standard deviations derived
from 100 realizations of the respective processes. B=10, L=100,
and parameters in Eq. �11�: �=	=0.1, g11=g22=0.1, and g12

=0.01.

JENS PRUSSEIT AND KLAUS LEHNERTZ PHYSICAL REVIEW E 77, 041914 �2008�

041914-4



ẋ1 = − xx2 − x3,

ẋ2 = xx1 + 0.15x2,

ẋ3 = �x1 − 10�x3 + 0.2,

ẏ1 = − yy2 − y3 + ��x1 − y1� ,

ẏ2 = yy1 + 0.15y2,

ẏ3 = �y1 − 10�y3 + 0.2, �12�

with x,y =1�� with �=0.03. As already shown in Ref. �53�
for this value of the frequency mismatch both phase synchro-
nization and generalized synchronization arise at the same
magnitude of the coupling strength �. For each value of � we
generated 100 realizations by randomizing the initial condi-
tions near the attractor of the systems and discarded the first
10 000 data points to account for possible transients. The
systems were integrated using a fourth-order Runge-Kutta
scheme with an internal step size of �tint=0.05, and the time
series were sampled with a sampling interval of �t=0.3. For
the analysis the components x1 and y1 were used as observ-
ables and their time series consisted of N=10 000 data
points. Again we used B=10, L=100, and a fixed time shift
of �=1 sampling interval.

As shown in Fig. 4 the asymmetric measures F�1� and F�2�

allowed us to detect the correct coupling direction. At a cou-
pling strength of �=�s�0.1 the two systems synchronize
�53� and F�1�→0 and F�2�→0 for stronger couplings. F�2�

was more sensitive to the coupling than F�1� and thus allowed
us to resolve a larger range of coupling strengths. The sym-
metric measure M�2� also detected the coupling and attained
increasingly negative values with increasing coupling
strength. For ���s we observed an abrupt change of the sign
and a rapid increase of M�2� toward large positive values.
Whether this effect can be used for a characterization of
certain synchronization properties needs further investiga-
tion.

Summarizing this section, we conclude that our data-
driven approach enables a characterization of interactions be-
tween stochastic processes and allows one to differentiate
between couplings in the deterministic and the stochastic
part of the dynamics. Moreover, our findings indicate that
even in the case of a violation of the assumption of a two-
dimensional diffusion process our approach can still yield
valuable information on the presence and the direction of

couplings between dynamical systems. The calculation of
our measures is computationally very inexpensive. The algo-
rithm is of order O�N�, and the calculation of the measures
takes about 0.1 s on a desktop computer �clock speed 1.73
GHz� for time series of size N=50 000 data points. Our ap-
proach might thus be advantageous for field applications that
aim at an investigation of interactions between complex sys-
tems with poorly understood dynamics. Such an investiga-
tion will be presented in the next section.

IV. APPLICATION TO EEG DATA

Surgical treatment of focal epilepsies requires exact local-
ization of the seizure generating area of the brain �epileptic
focus� and its delineation from eloquent cortex, which is in-
dispensable for defined cortical functions �54�. Although the
concept of an epileptic focus has been successful in epilepsy
surgery, there is now evidence for this concept to be replaced
by a more complex model, which takes into account poten-
tial interactions within the neural networks involved in sei-
zure generation �55–58�. In this context, gaining deeper in-
sights into the directionality of possible interactions between
different brain regions—even during seizure-free periods—
may help to improve understanding of the basic mechanism
that lead to the generation of epileptic seizures. Since the
1970s linear interdependences among EEG signals have been
analyzed by cross correlation in time domain �59,60� and by
cross spectrum or coherence in frequency domain �61,62�.
More recently, approaches based on asymmetries of nonlin-
ear interdependence measures �17,57,63–66�, of phase rela-
tionships �13,14,67�, or of entropy-based estimators of infor-
mation flow �21� have been proposed, and exemplary
investigations indicate that directional interdependences in
the epileptic brain can be assessed. As already mentioned in
the Introduction, however, most of these methods make
rather strict assumptions about the dynamics of the underly-
ing systems and many approaches preferentially focus on the
low-dimensional deterministic part of the dynamics. In con-
trast, in a previous study �42� we showed that valuable infor-
mation for diagnostic purposes can be obtained particularly
when considering stochastic and high-dimensional influences
on brain dynamics.

We here retrospectively studied multichannel, multiday
electroencephalographic �EEG� recordings from eight pa-
tients suffering from pharmacoresistant focal epilepsies of
temporal lobe origin. These data were already investigated in
Ref. �42� using qualifiers that were based on estimated

ε ε

FIG. 4. Dependence of F�1� and F�2� �left� and
M�2� �right� on the coupling strength � for two
coupled Rössler dynamics. Symbols and error
bars denote means and standard deviations de-
rived from 100 realizations of the respective pro-
cesses �cf. Eq. �12��. Time series consisted of N
=10 000 data points. Note the break in the ordi-
nate in the plot of M�2�.
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Fokker-Planck coefficients in a one-dimensional framework.
For these patients complete seizure control can be achieved
by surgically removing the seizure generating brain structure.
Since this structure could not be determined unequivocally
with noninvasive diagnostic techniques, invasive EEG re-
cordings via chronically implanted intrahippocampal depth
electrodes �cf. Fig. 5�b�� were necessary before resective sur-
gery. In four patients seizures originated exclusively from the
left and in another four patients from the right temporal lobe.
All patients achieved complete seizure control after surgery,

so the epileptic focus can be assumed to be contained within
the resected area. The EEG time series were sampled con-
tinuously over a longer period �5–12 days� with bandpass
filter setting of 0.5–85 Hz �12 dB/octave� using a common
average reference. The sampling interval �t was 5 ms, and
analog-digital conversion was performed at 16-bit resolution.
All patients had signed informed consent that their clinical
data might be used and published for research purposes, and
the study was approved by the local medical ethics commit-
tee.
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FIG. 5. �Color online� Exemplary results obtained from analyzing EEG data from a patient suffering from a left-sided focal epilepsy. �a�
Section of the temporal evolution of the average interdependence between a given electrode contact and the remaining ones as quantified by

F̄c
�1� �top�, F̄c

�2� �middle�, and M̄c
�2� �bottom�. The section started at 12:30 a.m. and covered 24 h. For F̄c

�1� and F̄c
�2� a positive value indicates

that contact c has—on average—a weaker influence on the remaining contacts than vice versa. �b� Electrode implantation scheme for left �L�
and right �R� intrahippocampal depth electrodes. Each electrode is equipped with ten cylindrical contacts �diameter 2.5 mm, intercontact
distance 4 mm�. �c� Temporal averages 	Fcc�

�1� 
t �left�, 	Fcc�
�2� 
t �middle�, and 	Mcc�

�2� 
t �right� calculated from the entire EEG recording �duration
7 days�. Data from the seizure-free interval entered the calculations only. A color-coded matrix entry with row and column indices
c and c� represents the value of the respective measure calculated for an electrode contact combination �cc��, where
c ,c�� �R01, . . . ,R10,L01, . . . ,L10�. A positive value of 	Fcc�

�1� 
t or 	Fcc�
�2� 
t indicates a stronger influence of contact c� on contact c than vice

versa. Entries on the main diagonal are colored black.
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For each combination of the Nc=20 electrode contacts we
performed a time resolved calculation of our interdepen-
dence measures using a moving-window technique with data
windows of size N=10 000 data points �corresponding to 50
s EEG� and windows overlapped by 50%. We restricted our
analysis to EEG data from the seizure-free periods only; i.e.,
we excluded a possible preseizure period of 2 h duration,
seizure activity, and a post-seizure period of 1 h duration.
During EEG monitoring, patients had, on average, 6 seizures
�range: 3–16 seizures�. As in the case of our numerical stud-
ies presented in Sec. III we used B=10, L=100, and a fixed
time shift of �=1 sampling interval.

In Fig. 5�a� we show, as an example, a section of the
temporal evolution of the average interdependence between
each contact c and the Nc−1 remaining ones quantified by

F̄c
�1��w� = �Nc − 1�−1 �

c��c

Fcc�
�1� �w� ,

F̄c
�2��w� = �Nc − 1�−1 �

c��c

Fcc�
�2� �w� ,

M̄c
�2��w� = �Nc − 1�−1 �

c��c

Mcc�
�2� �w� , �13�

where, for example, Fcc�
�1� �w� denotes the estimate of F�1� for

window w and electrode contact combination �cc��. Despite
fluctuations, we observed that with F�2� the brain region
sampled with electrode contacts L06–L09 appears to be
driven—on average—by the other brain regions �positive
sign�. With F�1� no such effect was discernible. Also the sym-
metric measure M�2� allowed one to detect this structure in
the left hemisphere and may indicate a temporarily less pro-
nounced mixing of noise processes in the EEG signals from
this brain region. Although for this section of the data set the
observed effects appeared to be most pronounced during
night time �indicating a possible relationship to different
states of vigilance�, this was not a consistent finding for all
patients.

In order to allow a compressed view of the presence and
of the direction of interdependences between brain regions,
we calculated, for each electrode contact combination �cc��,
the quantities 	Fcc�

�1� 
t, 	Fcc�
�2� 
t, and 	Mcc�

�2� 
t, where 	¯
t denotes
the average over all windows �cf. Fig. 5�c��. Because of the
antisymmetric definition of F�1� and F�2�, the displays for the
averaged quantities are antisymmetric, whereas the corre-
sponding display for M�2� is symmetric. Given an EEG re-
cording time of about 7 days for this patient, the averaged
values are rather small. Nevertheless, with F�2� the highest
average levels of interdependence during the seizure-free in-
terval were again confined to the region sampled by elec-
trode contacts L06–L09. Interestingly, this region corre-
sponds to the epileptic focus as determined by established
presurgical evaluation techniques �68�. Considering the sign
of F�2�, the epileptic focus seems to be driven even by brain
regions from the opposite hemisphere. We could not observe
a similar clear-cut interdependence structure with F�1�. For

this patient the lowest values of M�2� were confined to the
same circumscribed brain region that corresponded to the
epileptic focus.

We observed in six out of eight patients that with F�2� the
epileptic focus—as determined by the presurgical workup—
could be identified as a relatively narrow brain region that
appeared to be influenced by all other sampled brain struc-
tures. With F�1� and M�2� such an identification was possible
in one and three, respectively, patients only. We also consid-
ered the predominant direction of interdependences between
the hemisphere containing the epileptic focus �ipsilateral
hemisphere, I� and the opposite �contralateral, C� hemi-
sphere by calculating the temporal and spatial averages

	FIC
�1�
t = �Nc/2�−2Nw

−1 �
c�I,c��C,w

Fcc�
�1� �w� ,

	FIC
�2�
t = �Nc/2�−2Nw

−1 �
c�I,c��C,w

Fcc�
�2� �w� , �14�

over all Nw analysis windows and all electrode contact com-
binations �cc��. Contacts c were from the ipsilateral and con-
tacts c� from the contralateral brain hemisphere. Due to the
crude spatial and temporal averaging, both 	FIC

�1�
t and 	FIC
�2�
t

attained rather small values �cf. Fig. 6�. Nevertheless, both
quantities attained positive values in all patients, which indi-
cates that the brain hemisphere containing the epileptic focus
is being driven by the opposite hemisphere.

Summarizing this section, the findings presented here ex-
tend our previous observations using qualifiers that were
based on estimated Fokker-Planck coefficients in a one-
dimensional framework �42� by providing insights into the
direction of interactions between the epileptic focus and
other brain regions. When interpreting the estimator of D�2�

as the diffusion coefficient of a Fokker-Planck equation, our
results indicate that a more detailed characterization of spa-
tial �and temporal� aspects of the epileptic process can be
achieved particularly when focusing on interactions in the
stochastic part of the dynamics. Since the epileptic focus is
usually assumed to drive other brain regions, our finding of
an epileptic focus being almost constantly driven by other
structures during the seizure-free interval might appear coun-

〈
F

(1)
IC

〉
t〈

F
(2)
IC

〉
t

FIG. 6. Predominant direction of interdependences between the
hemisphere containing the epileptic focus �ipsilateral hemisphere,
I� and the opposite �contralateral, C� hemisphere as quantified by
the temporal and spatial averages 	FIC

�1�
t and 	FIC
�2�
t. For all patients,

the positive values indicate a stronger influence of the contralateral
on the ipsilateral hemisphere than vice versa.
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terintuitive or even contradictory. Although an unambiguous
inference of directionality of interdependences from empiri-
cal data is far from being resolved �69�, there are scenarios
that might support our observations. One could, e.g., imagine
that the driving reflects an inhibitory process that prevents
the generation of a seizure within the epileptic network. Al-
ternatively, the driving might also reflect an increased sus-
ceptibility of the seizure generating area within this network.
These hypotheses are testable and should be investigated in
future studies, which should include analyses of EEG data
from a larger group of patients and a comparison with other
approaches to assess directional interdependences.

V. CONCLUSION

We have proposed a data-driven method to characterize
interdependences between dissipative dynamical systems un-
der the influence of noise. For this purpose, we followed
Refs. �29–31� to estimate drift and diffusion coefficients of a
Fokker-Planck equation, and defined measures that are able
to quantify the asymmetry in coupling as well as the pres-
ence of a mixing of the independent noise components of the
process. We showed numerically that couplings in the deter-
ministic part can be discriminated from couplings in the sto-
chastic part of the dynamics if the coupling is not too strong
and if effects of a potential usage of a finite time shift in the
estimation of the coefficients are taken into account. We note
that the definition of our measures does not depend on details
of the procedure for estimating the coefficients. We used a
finite time shift to facilitate a fully automated calculation of
our interdependence measures. We could show that even for
systems that do not meet the prerequisites needed for an
analysis in terms of a two dimensional Fokker-Planck equa-
tion valuable information about the directionality of a cou-
pling can be extracted using our approach.

Our results obtained from analyzing electroencephalo-
graphic recordings from epilepsy patients indicate that our
approach can help to improve the evaluation of epilepsy pa-
tients candidate for respective therapies and to promote the
current discussion as to whether human epilepsy can be re-
garded as a disorder of large neural networks �55,56�. We
thus expect that our approach can contribute to further im-
prove understanding of interdependences in complex dy-
namical systems such as the human brain even in cases
where the assumptions underlying the Fokker-Planck ap-
proach �Markovianity, Gaussianity of the driving noise�
might not be fulfilled in a strict sense.
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APPENDIX: INFLUENCE OF A FINITE TIME SHIFT � ON
THE ESTIMATION OF THE COEFFICIENTS

In order to investigate the influence of a finite time step
on the estimation of the coefficients we followed Ref. �48�
and considered the conditional moments in Eq. �6�:

m�n��x�,t,��: = �	�X�t + �� − X�t��n
�X�t�=x�

=� dnx�x − x��np��x,t + ��x�,t� . �A1�

Because p��x , t+��x� , t� is a solution of the Fokker-Planck

equation �tp��x , t+��x� , t�= L̂p��x , t+��x� , t�, it can be ex-

pressed in terms of the Fokker-Planck operator L̂
=−�i�xi

D�1�+�ij�xi
�xj

D�2� �where �t=� /�t and �xi
=� /�xi� as

p��x,t + ��x�,t� = eL̂���x − x�� = �
k=0

�
�L̂��k

k!
��x − x�� ,

�A2�

where p��x , t�x� , t�=��x−x�� was used. Considering terms up
to the order of �2 it follows for the ith component of the first
conditional moment �n=1�,

mi
�1� = �Di

�1� +
�2

2
��

k

Dk
�1��xk

Di
�1� + �

kl

Dkl
�2��xl

�xk
Di

�1�� + O��3� ,

�A3�

and for the entry with indices ij of the second conditional
moment �n=2�,

mij
�2� = 2�Dij

�2� + �2�Di
�1�Dj

�1� + �
k

�Djk
�2��xk

Di
�1� + Dik

�2��xk
Dj

�1��

+ �
k

Dk
�1��xk

Dij
�2� + �

kl

Dkl
�2��xl

�xk
Dij

�2�� + O��3� . �A4�

If a coupling is present in the ith component of the drift
vector, this component is a function of xj—i.e., Di

�1�

ε
(2)
1 ε

(2)
2

FIG. 7. Dependence of F�1�, F�2�, and M�2� on
the coupling strength. Left: coupling of x2 into
D11

�2� and right: coupling of x1 into D22
�2�. Symbols

and error bars denote means and standard devia-
tions derived from 100 realizations of the respec-
tive processes. Time series consisted of N
=50 000 data points. Parameters in Eq. �11�: �
=	=0.1, g11=g22=0.1, and g12=0.01.
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=Di
�1��xj�. In this case the first term of order �2 in Eq. �A4�

transfers this coupling to the entry ij of the estimated diffu-
sion coefficient. Whether the other terms of order �2 in Eq.
�A4� contribute to this effect depends on the functional char-
acteristics of the first and second coefficients �i.e., it depends
on whether the derivatives of Di

�1� and Dj
�1� are still functions

of xj and on whether �xk
Dij

�2��0 in the third term of order �2�.
Thus, if the coupling strength and the time shift � are large
enough, the coupling can erroneously be detected by the
measures F�2� and M�2� as is the case for the system shown in
Fig. 2�a�.

If a coupling is present in the ith diagonal element Dii
�2� of

the diffusion coefficient, this coupling can only be trans-
ferred to the ith component of the estimated drift vector if the
second derivative of Di

�1� does not vanish �cf. second term of

order �2 in Eq. �A3��. To demonstrate this effect we show in
Fig. 7 results for the same system as in Fig. 2 but this time
using a time shift that was larger by a factor of 10. For a
coupling of the second process component x2 into the first
diagonal element of the diffusion coefficient �i.e., all cou-
pling strengths were zero except �1

�2�; cf. Fig. 7�a�� the cou-
pling was not transferred to the estimated drift vector be-
cause �x1

2 �−�x1�=0 and the second term of order �2 in Eq.
�A3� did not contribute to the first component of the condi-
tional moment. However, in the case a coupling of x1 into the
second diagonal element of the diffusion coefficient �i.e., all
coupling strengths were zero except �2

�2�; cf. Fig. 7�b�� the
second derivative of D2

�1� is not zero—i.e., �x2

2 �x2�	−x2
2��

�0. Thus, the coupling was transferred to the estimated drift
coefficient and was detected by the measure F�1�.
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